More Die, Stronger Die. Smaller, Thinner Packages Drives Die Singulation by Plasma Etch

David Butler
VP Product Marketing
3DASIP, 2015
The case for plasma dicing
- Si DRIE
 - Bosch Process
- DRIE Benefits Summary
- Integration
 - Patterning
 - Metals
 - Process control & notching
- Die Strength
- Summary
The Case for Plasma Dicing

For small die
- Trend to the very small
 - RFID
 - PMIC
 - MEMS
 - <0.25x0.25mm
 - >100,000 die per wafer
- Dice lane for saw - ~80um
- Dice lane for plasma - <20um
 - Can be up to 80% more die per wafer
- Parallel vs serial dicing
 - Plasma parallel… wfr per hr
 - Saw serial … hrs per wfr

For thin die
- Trend to the very thin
 - 3D stacking, low z height
 - IGBT devices
 - <<50 um
- Saws damage die
 - Chipping & cracking
 - Reduce die strength
- By plasma
 - No chipping
 - Shape die for stress management
 - Stronger die
The Case for Plasma Dicing

- OSATS do 5 side inspection on sawn die. Every one
 - By direction of their customers
 - To look for cracking/chipping on sides and back of die
 - Big investment in inspection tools, and time
- Collecting data, but expect to delete this step with plasma
 - No cracking or chipping with plasma dicing
Si DRIE for Plasma Dicing

The “Bosch” Process

- Repeating loops
 - Polymer dep
 - Polymer removal
 - Isotropic Si etch
- Chemical, non damaging

Fundamental to the Si dicing etch:

- Providing a compatible etch structure; dealing with metal, dielectrics
- Definition of the Si to be etched
- Majority of challenges relate to test structures

“Scallops” – generated by isotropic Si etch
Dicing Schemes

DBG – Dice Before Grind

- ‘Standard’ equipment
- Partial DRIE from device side
- Invert wafer & frame mount
- Singulate during B/S grinding

DAG – Dice After Grind (On Carrier)

- ‘Standard’ equipment
- Temporarily bond to wafer sized carrier
- Singulate during DRIE
- Remount die onto tape/frame for pick & place

DAG – Dice After Grind (On Frame)

- Frame based equipment
- Singulate during DRIE
- Drop-in replacement for conventional dicing

DBG – Dice Before Grind

- ‘Standard’ equipment
- Partial DRIE from device side
- Invert wafer & frame mount
- Singulate during B/S grinding

DAG – Dice After Grind (On Carrier)

- ‘Standard’ equipment
- Temporarily bond to wafer sized carrier
- Singulate during DRIE
- Remount die onto tape/frame for pick & place

DAG – Dice After Grind (On Frame)

- Frame based equipment
- Singulate during DRIE
- Drop-in replacement for conventional dicing
Mosaic fxP – for DAG

- Mosaic platform
 - EFEM compatible with tape frames
 - Frame and/or wafer alignment
 - Simultaneous wafer/frame running

- Rapier-200S
 - Sized for 200mm wafer on tape frames
 - Modified handling & ESC
 - Same processes as standard Rapier

- Rapier-300S
 - Sized for 300mm wafer on tape frames
 - Modified handling & ESC
 - Same processes as standard Rapier
Benefits of DRIE for Dicing

- Throughput
 - Parallel process
 - Largely independent of die size
 - Cluster approach for higher output/floor area

- Non-damaging
 - Bosch etch creates clean scallops
 - No vibration, debris, water
 - Increased die strength
 - Yield improvement

- Die Density
 - Narrower dicing lanes
 - Die shape/location can be varied
Mosaic Plasma Dicing Examples
Die Sizes from <1mm² to >10mm²

- 20µm x 100µm
- 30µm x 300µm
- 10µm x 100µm
- 50µm x 190µm
- 7µm x 120µm
Preparing for Plasma Dicing

If start with a blank sheet…
• Lane width reduction
• Die shape & tessellation
• Removal of seal rings, etc
• Moving of test structures (TEG)
 • Especially metals
 • On-die or in “die” locations
 • Ensure space around TEG

Process Flow

Adapt main device process flow
Remove non-Si features

Additional etch steps after test structures are used
Options to Define Lanes

Litho/Self-masking

- Mask
- Top Dielectrics
- Si, including active layers
- Bondpads?
- Solder?

After clearing non-Si materials

Litho for additional mask layer
- Standard films can be used
- PR, PI, Oxide, etc

Or thicken existing layers as sacrificial mask layers
- Cleared during main steps

Combine LASER/Blade & Plasma

- Use LASER or blade to start
 - Eliminate non-Si materials
 - Open lane to Si.
- Complete singulation with DRIE.
Combining Plasma & LASER/Blade

- Lane definition not perfect
 - Edges not as “sharp” as litho
 - DRIE can manage
- If non-Si materials not completely removed
 - OK, if they do not bridge lane
 - Simply etch around them
Metals on Device Side

- Bondpads and solder bumps
 - All are compatible with DRIE PM
 - No apparent risk to chamber condition
- No observable damage to bumps/pads post-etch & clean
Backside Metals

- Having a backside metal is an advantage
 - Can be used with electrostatic clamp to allow wider process window

- How are die separated?
 - Not by etch
 - Unique step to complete singulation from metal

- Multiple backside metal (BSM) separation options available
 - Cleaving
 - Stretching
 - Blade/LASER

After BSM Separation
Metal from lanes retained on original tape

After tape transfer
Notching

- Notching is where etch continues under the die
 - It will reduce die strength
- Dicing to tape is parallel to SOI
 - Risk of notching at interface
 - Due to build up of standing charge
- Notching can be prevented
 - Pulsed bias RF dissipates charge, we have IP
 - Endpointing

With EPD
With Overetch control

Notching <3μm

Without EPD
Without Overetch control

Notching >15μm
Endpointing to Prevent Notching

- Endpoint control of process upon reaching tape
 - Requires EPD able to cope with low OA & high process pressures
 - SPTS developed Claritas to enhance OES detection

- Once at tape, manage process completion
 - Pulsed RF
Die Strength Experiment

- SPTS & DISCO compared die strength behaviour
 - Comparing the patterning methods; Photo, Blade & LASER
 - Notching; With & without EPD/Overetch control

No.3 Litho + STD

Cross section	Back side

No.5 Litho + Large

Cross section	Back side

EPD & Bias Pulsing
No Notch

No EPD/No Bias Pulsing
Large Notch
Plasma dicing gives approx 2x gain in die strength
- Patterning method has minor influence
- The weakest die had the largest notch
- Shows importance of endpoint & pulsed biasing
Compared to Stealth

- OSAT data for plasma
 - 80% stronger than blade
 - 17% stronger than stealth
- Stealth works by creating a damage line inside Si
 - Impact on die strength will increase as die gets thinner
Plasma dicing is rapidly becoming an accepted technique
- For small die, for thin die
- Non-damaging. No residue. Fast

Process & Hardware are set & available

Key issue is integration of plasma etch into this stage
- Patterning
- Metals & Dielectrics in the dicing lane

Variety of options to be considered
- Layout & process flow changes
- Additional or Self masking
- Use of LASER/Blade as patterning medium

Process control through EPD & Notch prevention
- Critical for die strength
Thanks to…

SPTS Samples & Applications Groups
DISCO