High Density Packaging on Wafer Level Fan-out: Deposition and Via Drilling Solutions Tailored for Non-Silicon Substrates

David Butler
VP Product Management and Marketing
Contents

■ FOWLP in advanced packaging
 ■ Position in the market
 ■ How it’s made
 ■ How it’s used

■ Processing FOWLP wafers
 ■ Contamination
 ■ Warpage

■ High density FOWLP
 ■ Through mold vias by laser drill
 ■ Metallizing TMV
The Rise of FOWLP

- 3D production starts in 2015
 - 4 die stacked memory
 - SKHynix, Samsung & Micron all announced readiness
- 2.5D ramping for high BW: CPU with stacked memory
 - AMD graphic with SKHynix HBM
 - Intel “Knight Landing” MPU with Micron HMC

- High bandwidth packages with 2.5/3D is now
- When will it move into broader markets?
 - It’s all about cost…

- Could FOWLP fill the gap?
The Interposer Gap: Line & Space

PCB Substrate Manufacturers

OSAT / Wafer foundries

Silicon

Opportunity

FanOut

STATS eWLB: 10µm L/S
TSMC INFO: 5µm L/S
RDL first FO: <2µm L/S

100µm -> 25µm -> 10µm -> ~8-5µm -> 1µm

100nm -> 10nm

Lower cost than Si/Glass Interposer?

Glass
Who manuf interposers?
Ground rules?

Organic Substrate

GAP!

High Cost

Who manufactures interposers?

Ground rules?

Who manufactures interposers?

GAP!

Wafer Design Rule

© 2015 SPTS Technologies

Courtesy Phil Garrou, Yole
Mobile is the main driver

Auto, medical, industrial all active

20% CAGR through 2020
Simple FOWLP

- Laminate foil on carrier (Si, glass)
- Pick & place KGD on carrier
- Wafer level compression molding
- Remove carrier, invert mold substrate
- RDL by thin film tech
- Solder ball attach
- Singulate
FOWLP Uses

Partitioning needs to be designed for
- Big die into smaller die means higher yield
- Separating functions means fewer interconnect layers
- Use appropriate nodes for some operations saves $$

RF with small spaced passives
- Better performance in a smaller package
Performance Benefits of FOWLP

- Form factor - <0.3mm height, <0.8mm stacked
- Short die-to-die, die-to-passive spacing, <100um
 - Smaller footprint than pcb mount
 - Speed, heat dissipation
- Low loss substrate, high Q factor inductance
- >60 GHz capable
 - HD video streaming, fast file transfer
RDL Processing on FOWLP

- FOWLP mold RDL processing has two main challenges:
 - Contamination
 - Mold contains moisture, solvents
 - Must be removed before metal dep otherwise high Rc
 - Problem: mold wafer max temperature is <150°C
 - How drive out contaminants at low temperature?
 - Warpage
 - Mold wafer is not flat
 - Mold getting thinner to save costs, reduce height
 - Different die placement patterns change stress
 - Problem: how cope with up to 6mm warpage?
Sigma fXP PVD System

- 200/300/HD Wafers
- Industry Standard EFEM
 - Up to 3 Load Ports
- Vacuum Transport Module
 - Cryopump vacuum
- Up to 6 Process Modules
Mold Contains Contaminants

- Water and CO dominate
- At 120°C, takes @30mins for gases to approach pre-load values
- How manage and still be productive?
Multi-Wafer Degas (MWD)

- Vertical batch degas module
 - Integrated to cluster tool
 - No vacuum break; degas to dep
- 200/300/HD wafer sizes
- Tmax 150C
- Cryopumped for water efficiency
- Complex scheduling software
 - Manages batch/single wafer interaction

Up to one hour degas time for each wafer
BUT with batch, a degassed wafer is available every 90secs
Continuous processing of 25x300mm wafers

<<10secs to achieve E-08T. No upward trend

Contamination free background
Rc Sensitivity to Degas Time

Tests performed on FO-WLP Epoxy Mold Compound Test Vehicle
TMAX = 120C

Benefit of batch degas:
Longer degas, no loss in t’put

Rvia drops as increase degas time

35 mins
Handling Warped Wafers

- Building on experience with Power BSM…
- Modifications for thin wafers:
 - Chamber furniture clearances
 - Robot acceleration/deceleration profiles
 - Wafer lift acceleration/deceleration profiles
 - Slot pitches
 - Temperature rise & fall rates
- Ability to cope with…
 - Mold thickness 800 um, trending to <400um
 - Warpage 3mm, trending to >6mm
Increased Density: FOWLP with TMV

- High density POP, or use both sides of substrate
- Laser drill through 200 to 400um EMC
- 80° taper to near vertical vias
- Highly accurate registration
- High speed for dense drilling patterns
Emerald Laser Via Formation

- 8 steering mirrors = 8 drilling channels
- Continuous drilling
 - No waiting time for mirror reposition
 - 100% utilization of laser
 - Drill speed increases with via density
- UV laser source
 - Smaller wavelength, better resolution

Drilling Speed vs Via Count

Multi Path Technology - parallel

Conventional laser drilling - serial
Multi Path: Cooler Technology

Volcano and mushrooming due to overheating

One laser per substrate risks overheating via

8 beams – parallel drilling. No overheating

Smooth walls
Local and Global Accuracy

- Connect system to fab CAM
 - New layouts available in <5 mins
- <5um drill accuracy wafer to wafer
 - 2 to 3x tighter than competition

4000 measurements over 1 week, multiple substrates
Laser Drilled Vias

- Down to 50 um diameter with UV wavelength
- Vertical and tapered
- Reduce beam energy as approach base
 - No damage to Cu pad
Metallizing Laser Drilled TMV

- Epoxy Mold Compound
- 250 µm x 560 µm Via, AR2.2
- Deposited Film Stack:
 - Ionized PVD barrier/seed
Summary

- 2.5/3D production starting now
 - High bandwidth applications

- When will technology be applied to broader end markets?
 - COST…
 - FOWLP a promising alternative

- FOWLP presents new challenges to equipment vendors
 - Contamination must be removed at <150C
 - Warpage up to 6mm

- New technology developed for RDL PVD
 - Batch style degas and large bow handling

- UV, multi beam laser for high density TMV
 - Small diameter vias, smoother sidewalls
 - High rate drilling without exceeding temperature budget

- Ionized PVD into laser drilled TMV verified