May 09, 2018

Brainstorm: how are manufacturers preparing for 5G?


Q: In what ways are manufacturers preparing for 5G?

To effectively address the question of how manufacturers can prepare for the 5G wireless networking juggernaut, one can look ahead to the impact 5G will have on electronic end devices targeted to support 10X faster data rates and 1000X more data traffic. 5G will facilitate powerful connectivity throughout all industries, and manufacturing innovation must advance to support the scale and quality necessary for reliable implementation. The impact of 5G on PCB production provides a good specific illustration of the changes needed.

Essential to high-frequency 5G network connectivity are the ubiquitous PCBs at each node that will enable the projected increases in 5G data rates and bandwidths. Faster download speeds will drive seamless, real-time capabilities for new applications from augmented reality and virtual reality (AR/VR) to life-critical autonomous vehicle sensing. For these 5G-driven applications, the allowance for error is virtually nil, and with current IoT device growth forecasts in the billions, the network’s vulnerability to failure is exponential. These latency-sensitive applications will drive PCB reliability standards to new levels, directly influencing manufacturing practices to ensure an equally high level of quality production and inspection.

PCB manufacturing faces unique challenges due to the 5G network’s higher frequencies and shrinking form factors. Increased I/O in ever-smaller designs commands high-density interconnects (HDIs) with inherently thinner board traces. These ultra-thin lines can introduce possible signal performance degradation. For example, if the line’s physical characteristics, such as top and bottom width, vary from the original design, RF signal transmission can be delayed, negatively impacting downstream data flow. By necessity, manufacturers are challenged with deploying myriad new innovations, such as modified semi-additive processes (mSAP) to ensure designs are executed well in production. The next challenge in PCB production is tackling testing accuracy and reliability.

Automated Optical Inspection (AOI) tools have been successfully used to inspect PCBs for defects, but until now, AOI systems primarily inspected CAM designs to ensure the original design was faithfully produced and adhering to design rules. For 5G-enabled PCB boards, additional capabilities are needed for the physical measurement of trapezoidal and/or rectangular-shaped cross sections. This requires an AOI system that can measure both the top and the bottom of the PCB, as well as inspect different potential defects including laser vias and patterning with minimal handling. A few AOI tools have some measurement capabilities, but still only measure the trace width at the top of the conductor without measuring width at the bottom. Surprisingly, until now, bottom measurements have only been possible by taking samples and inspecting them manually by microscope, an unsustainable practice in light of the scale and yields required for future 5G deployment.

Innovation in AOI technology is showing advancement as demonstrated by PCB manufacturers’ ability to leverage 2D Metrology technology to automatically inspect and measure PCBs’ top and bottom trace conductors. This innovative testing capability can be performed at high throughput rates on a high sampling rate, ensuring better overall yield for manufacturers. This is an important step toward achieving the PCB quality levels needed for cost-effective 5G adoption.

There is much heralding of 5G’s imminent arrival, but its adoption will require change and continuous innovation across a spectrum of technologies. Manufacturers, as the true facilitators of this massive transformation, need to be at the forefront of this innovation to ensure 5G network quality and reliability. Just one small representative example of this is in the necessary evolution of AOI technologies to support high-frequency, low-latency 5G systems by enabling faster, higher-precision PCB inspection and verification.

By Benny Solomon, AOI and AOS Marketing Director, Orbotech

Referred to as the enabler of the “Fourth Industrial Revolution,” 5G facilitates wireless solutions for applications across many industries by reliably connecting massive numbers of devices, providing ultra-low communication link latency and gigabit speeds.

5G can wirelessly connect millions of Internet of Things (IoT) devices in a dense urban area, for city-wide remote sensing or beacon networks. Connectivity modules are effective deployment solutions, allowing pre-certified 5G radios to easily deploy, and integrate in massive IoT networks. To minimize size, modules rely on advanced manufacturing techniques such as high-density System in Package (SiP) assembly, including the embedding of active and passive elements in the module substrate, and use of highest performance passive components to complement the advanced ICs in use. Novel power storage technologies are also useful, including solid-state low-voltage batteries or energy harvesting from solar cells or other sources, increasing the autonomy of devices.

5G will eliminate cellular network data bottlenecks, enabling simultaneous ultra-high-speed wireless transmission (even in crowded environments), by opening new radio spectrum like millimeter wave (mmWave) bands over 20 GHz. At first, 5G mmWave will likely be used by wireless carriers to provide Gbit Fixed Wireless Access to residential and SOHO customers. The next step will be using 5G mmWave to deliver Gbit mobile, such as live streaming player’s eye 4k video to smart devices of a crowd at a big game. This demands new antennas and RF filters, based on novel ceramics and other materials. These advanced mmWave components are necessary for handheld devices and network infrastructure base stations, where massive MIMO antenna arrays will be used for dynamic beam steering to maximize network capacity.

5G will transform businesses and daily lives. High performance electronics, including the latest passive component technologies, are essential to enable the hardware needed to make 5G a reality.

By Michael Chinn, Deputy General Manager ICT Group, Electronic Components Sales & Marketing Group, Senior Vice President, TDK

Radio access networks are going through a significant transformation in preparation for 5G. Legacy point-to-point Common Public Radio Interface (CPRI) networks between remote radio heads and baseband units are being replaced by Ethernet-based eCPRI fronthaul solutions. These solutions provide a more flexible, scalable way to support the higher bandwidth requirements that 5G will demand. This transition is also spurring the design and deployment of specialized pre-5G radio access equipment that increases network capacity and coverage. New designs for small cells, distributed antenna systems, massive MIMO, and other pre-5G radios face a new development challenge because they must simultaneously support LTE and Ethernet connectivity. This puts unique requirements on timing solutions to support low phase noise LTE clocking, low-jitter Ethernet clocking, and system clocking.

Another key innovation is now underway as metro and edge networks upgrade to higher bandwidths to supporting ramping demand for video streaming and mobile data. A tremendous amount of innovation is happening at the physical layer right now, as Ethernet switches/PHYs, FPGAs, and ASICs are migrating from 28 Gbps non-return-to-zero (NRZ) SerDes to higher-speed 56 Gbps and 58 Gbps PAM4 phase-amplitude modulation SerDes. PAM4 packs more bits into the same amount of time on a serial channel by squeezing in four states per cycle. The resulting signal-to-noise ratio (SNR) has to be much better to ensure the link’s bit-error-rate does not degrade. This, in turn, is driving the need for lower jitter clocks and crystal oscillators (XOs) to provide reference timing for 56G PAM4 SerDes.

By David Ryan, Senior Business Development and Strategic Marketing Manager, MACOM

The exciting evolution of 5G has been set in motion with the recently announced 3GPP standards; carriers are already announcing first deployments within 2018. From a radio perspective, OEMs and operators are treating these first deployments as the natural evolution of existing 4G networks and current architecture. Their initial steps will be to evolve this architecture in the traditional sense by adding more MIMO, splitting up the antennae into smaller pieces and putting a transceiver behind each one, similar to the 4G/LTE-A Pro Massive-MIMO strategy, which is already validated in both China and Japan. This solution, while not unlocking the potential of a full active antenna array, uses less complex hardware and fewer transceiver paths, thereby keeping initial costs down, and many manufacturers are leaning toward this natural step-by-step evolution.

In effect, these solutions put a lower power transceiver behind every antenna subsection—a typical 192 element antenna array, consisting of 12 rows, eight columns, and two polarizations, will be driven by 64 transceivers. Typically, such an implementation will be approximately 0.8 m tall and 0.4 m wide, fitting comfortably in the footprint for an existing Macro cell antenna.

Since the increased number of transceivers, combined with wider bandwidths, will generate a huge amount of raw data, the availability of cost-effective, high-speed, front-haul solutions as well as fiber capacity are also driving equipment vendors to reconsider solution partitioning. The new eCPRI standard effectively reduces the bandwidth requirement for fronthaul networks by integrating CPRI processing function in RRU. However, emerging low-cost 100G optics offer carriers the option to adopt CPRI for future-proof RRU implementation.

The 5G standards may have just been set, but it’s safe to say manufacturers around the world are already busy!

By James Wilson, Senior Marketing Director, Timing Products, Silicon Labs

ECN Brainstorm 

Cautionary Statement Regarding Forward-Looking Statements

Except for historical information, the matters discussed in this website (including in press releases, webcasts, presentations, posts and other places) are forward-looking statements within the meaning of the U.S. Private Securities Litigation Reform Act of 1995. These statements relate to, among other things, future prospects, developments and business strategies and involve certain risks and uncertainties. The words “anticipate,” “believe,” “could,” “will,” “plan,” “expect” and “would” and similar terms and phrases, including references to assumptions, have been used in this website to identify forward-looking statements. These forward-looking statements are made based on management’s expectations and beliefs concerning future events as of the date of the applicable information (press releases, webcasts, presentations, or posts) and are subject to uncertainties and factors relating to Orbotech’s operations and business environment, the previously announced acquisition of Orbotech by KLA, the manner in which the parties plan to effect the transaction, including the share repurchase program, the ability to raise additional capital necessary to complete the repurchase program within the time frame expected, the expected benefits, synergies and costs of the transaction, management plans relating to the transaction, the expected timing of the completion of the transaction, the parties’ ability to complete the transaction considering the various closing conditions, including conditions related to regulatory and Orbotech shareholder approvals, the plans, strategies and objectives of management for future operations, product development, product extensions, product integration, complementary product offerings and growth opportunities in certain business areas, the potential future financial impact of the transaction, and any assumptions underlying any of the foregoing. Actual results may differ materially from those referred to in the forward-looking statements due to a number of important factors, including but not limited to the foregoing matters and the possibility that expected benefits of the transaction may not materialize as expected, that the transaction may not be timely completed, if at all, that KLA-Tencor may not be able to successfully integrate the solutions and employees of the two companies or ensure the continued performance or growth of Orbotech’s products or solutions, the risk that the Company may not achieve its revenue and margin expectations within and for 2018 (including, without limitation, due to shifting move-in dates); cyclicality in the industries in which the Company operates, the Company’s supply chain management and production capacity, order cancelation (often without penalty), timing and occurrence of product acceptance (the Company defines ‘bookings’ and ‘backlog’ as purchase arrangements with customers that are based on mutually agreed terms, which, in some cases for bookings and backlog, may still be subject to completion of written documentation and may be changed or cancelled by the customer, often without penalty), fluctuations in product mix within and among divisions, worldwide economic conditions generally, especially in the industries in which the Company operates, the timing and strength of product and service offerings by the Company and its competitors, changes in business or pricing strategies, changes in the prevailing political and regulatory framework in which the relevant parties operate, including as a result of the United Kingdom’s prospective withdrawal from the European Union (known as “Brexit”) and political uncertainty in the United States, or in economic or technological trends or conditions, including currency fluctuations, inflation and consumer confidence, on a global, regional or national basis, the level of consumer demand for sophisticated devices such as smart mobile devices, automotive electronics, flexible applications and devices, augmented reality/virtual reality and wearable devices, high-performance computing, liquid crystal display and organic light emitting diode screens and other sophisticated devices, the Company’s global operations and its ability to comply with varying legal, regulatory, exchange, tax and customs regimes, the timing and outcome of tax audits, including the best judgment tax assessment issued by the Israel Tax Authority with respect to the audit of tax years 2012-2014 in Israel and the related criminal investigation, the Company’s ability to achieve strategic initiatives, including related to its acquisition strategy, the Company’s debt and corporate financing activities; the timing, final outcome and impact of the criminal matter and ongoing investigation in Korea, including any impact on existing or future business opportunities in Korea and elsewhere, any civil actions related to the Korean matter brought by third parties, including the Company’s customers, which may result in monetary judgments or settlements, expenses associated with the Korean matter, and ongoing or increased hostilities in Israel and the surrounding areas.

The foregoing information should be read in connection with the Company’s Annual Report on Form 20-F for the year ended December 31, 2017, and subsequent SEC filings. This information is also supplemented by the information in the applicable document on this website (e.g., press release, webcast, presentation, posts and other document). The Company is subject to the foregoing and other risks detailed in those reports. The Company assumes no obligation to update the information in this website (including press releases, webcasts, presentations, posts and other places) to reflect new information, future events or otherwise, except as required by law.